The Power of Monadic Second-Order Transductions

Achim Blumensath

Introduction

Transductions are operations of the form

(hyper-)graph \mapsto (hyper-)graph or graph class \mapsto graph class

defined in terms of logic.

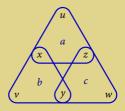
Applications

- decidability results
- replacement for automata/transducers for arbitrary graphs
- structural reductions

Hypergraphs

 $G = \langle V, E, \epsilon, P_0, \ldots, P_{m-1} \rangle$

V set of verticesE set of edges ϵ incidence relation P_i colour predicates



$$V = \{u, v, w, x, y, z\}$$
$$E = \{a, b, c\}$$
$$a = \{u, x, z\}$$
$$b = \{v, x, y\}$$
$$c = \{w, y, z\}$$

Monadic second-order logic (MSO)

element variables: x, y, z, ...set variables: X, Y, Z, ...boolean operations: $\land, \lor, \neg, \rightarrow, \leftrightarrow$ quantifiers: $\exists x, \forall x, \exists X, \forall X$

Example Reachability

$$\varphi(x, y) \coloneqq \forall X [x \in X \land \forall u \forall v [u \in X \land \exists e (u \in e \land v \in e) \rightarrow v \in X] \\ \rightarrow y \in X]$$

Transductions

Operations $G \mapsto \tau(G)$ on (hyper-)graphs

 $\tau = \operatorname{int} \circ \operatorname{copy}_k \circ \exp_m$

- exp_m expansion by *m* unary predicates
- $\operatorname{copy}_k G \mapsto G \oplus \cdots \oplus G$
- int MSO-interpretation

$$\langle \chi, \delta_1(x), \delta_2(x), \varphi(x, y), \psi_1(x), \psi_2(x), \dots \rangle G \mapsto \langle \delta_1^G, \delta_2^G, \varphi^G, \psi_1^G, \psi_2^G, \dots \rangle \quad \text{(provided } G \vDash \chi)$$

Graph classes

 $\tau(\mathcal{C}) \coloneqq \bigcup_{G \in \mathcal{C}} \tau(G)$

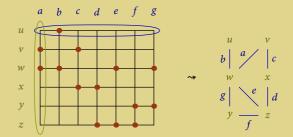
Examples

 $\tau_n: \{\text{paths}\} \to \{\text{trees of height } n\}$

 $\chi :=$ "the result is a tree" $\delta_1(x) :=$ true $\delta_2(x) :=$ true $\varphi(x, y) := ,x$ is the right vertex of y."

 \vee "*x* is the first vertex to the left of *y* with the right colour."

 $\tau: \{\text{grids}\} \rightarrow \{\text{graphs}\}$



 $\chi := "P_{\bullet}$ forms a column and P_{\bullet} a row." $\delta_1(x) := P_{\bullet}x$ $\delta_2(x) := P_{\bullet}x$ $\varphi(x, y) := \exists z [P_{\bullet}z \land , z \text{ is in the row of } x \text{ and in the column of } y."]$

Theories

Interpretation Lemma

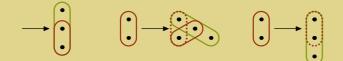
For every sentence $\varphi \in MSO$ and every transduction τ , there is a sentence $\varphi^{\tau} \in MSO$ such that

 $\tau(G) \vDash \varphi$ iff $G \vDash \varphi^{\tau}$ for all hypergraphs *G*.

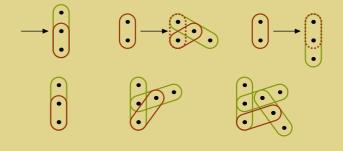
Corollary

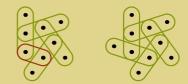
Let τ be a transduction. If C is a class of hypergraphs with **decidable** monadic theory, the theory of $\tau(C)$ is also **decidable**.

Graph grammars



Graph grammars





Derivation trees

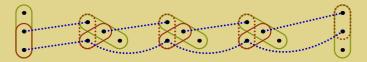
Each hypergraph has an **derivation tree**. In the example:

 $0 \longrightarrow 1 \longrightarrow 1 \longrightarrow 1 \longrightarrow 2$

Theorem

For each grammar, there exists a transduction

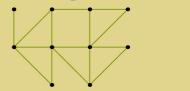
 $\{ derivation trees \} \rightarrow \{ hypergraphs \}$

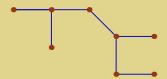


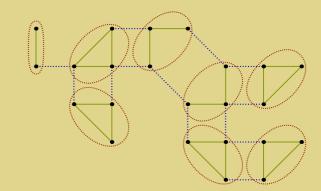
Corollary

Every grammar defines the image of a regular class of finite trees under a transduction.

Tree decompositions

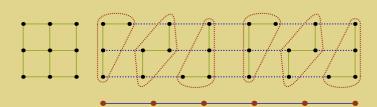






Examples





Tree width

The width of a tree decomposition $(U_{\nu})_{\nu \in T}$ is

 $\mathrm{wd}(U_{\nu})_{\nu\in T}\coloneqq \mathrm{max}_{\nu\in T}|U_{\nu}|$

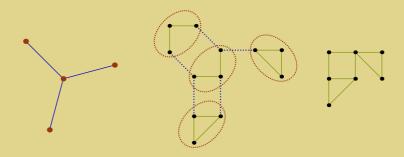
- $\mathsf{twd}(G)$ min. width of a tree decomposition with an **arbitrary tree** as index
- $\operatorname{twd}_n(G)$ min. width of a tree decomposition with a tree of height < *n* as index
- pwd(G) min. width of a tree decomposition with a **path** as index

Examples

- Trees have tree width 2 and unbounded path width.
- Trees of height *n* have path width n + 1.
- Cycles have tree width and path width 3.
- The $n \times n$ grid has tree width and path width n + 1.

Theorem

For every $n < \omega$, there ex. a transduction τ_n , mapping a tree T onto the class of all hypergraphs having a tree decompositions with width $\leq n$ and index tree T.



Theorem

For every transduction τ , there ex. $n < \omega$, such that every tree T is mapped by τ to a hypergraph G having a tree decomposition with width $\leq n$ and index tree T.

Corollary

A class of hypergraphs has **bounded tree width** if, and only if, it is the **image** of a class of **trees** under a **transduction**.

Question What about the converse? Can one obtain the tree decomposition from the hypergraph?

Fact

There is no transduction τ mapping a hypergraph G to the class of **all** tree decompositions of G.

Open Problem

What about computing only some tree decompositions of G?

Transduction hierarchy

Goal

Classification of classes of finite hypergraphs by their monadic theories

Order

 $C \leq \mathcal{K} \quad \text{iff ex. transduction } \tau \text{ with } C \subseteq \tau[\mathcal{K}]$ $\mathscr{K} \text{ is more complicated than } \mathcal{C}.$ $C \rightarrow \mathcal{K} \quad \text{iff } \mathcal{C} \leq \mathcal{K} \text{ and no } \mathcal{C} \leq \mathcal{D} \leq \mathcal{K}$

Theorem

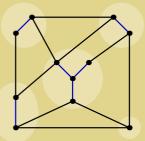
$$\emptyset \dashv \mathcal{T}_{o} \dashv \mathcal{T}_{1} \dashv \cdots \dashv \mathcal{T}_{n} \dashv \cdots < \mathcal{P} \dashv \mathcal{T}_{\omega} \dashv \mathcal{G}$$

- \mathcal{T}_n trees of height < n
- \mathcal{T}_{ω} all trees
- \mathcal{P} all paths
- \mathcal{G} all grids

Graph minors

Definition

A **minor** is obtained by: **deletion** of vertices and edges, **contraction** of edges.



Lemma

Ex. transduction $\tau : G \mapsto Min(G)$.

Excluded Grid Theorem

Theorem (Robertson, Seymour) (a) For every tree *T*, ex. $k < \omega$ such that $T \notin Min(G) \Rightarrow pwd(G) < k$ (b) For every grid *E*, ex. $k < \omega$ such that $E \notin Min(G) \Rightarrow twd(G) < k$

Theorem

For every path *P*, ex. *n*, $k < \omega$ such that $P \notin Min(G) \Rightarrow twd_n(G) < k$

Consequences

Theorem

 $\begin{array}{ll} \mathcal{C} \leq \mathcal{P} & \text{ iff } pwd(\mathcal{C}) < \infty \\ \\ \mathcal{C} \leq \mathcal{T}_{\omega} & \text{ iff } twd(\mathcal{C}) < \infty \\ \\ \\ \mathcal{C} \leq \mathcal{T}_{n} & \text{ iff } twd_{n}(\mathcal{C}) < \infty \end{array}$

Corollary

$$\mathcal{P} \dashv \mathcal{T}_{\omega} \dashv \mathcal{G}$$
$$\mathcal{P} \nleq \mathcal{C} \Rightarrow \mathcal{C} \le \mathcal{T}_n \text{ for some } n$$

Proof

 $\mathcal{G} \notin \mathcal{C} \implies \mathcal{G} \notin \operatorname{Min}(\mathcal{C}) \implies \operatorname{twd}(\mathcal{C}) < \infty \implies \mathcal{C} \leq \mathcal{T}_{\omega}$

The lower part of the hierarchy

Lemma

For every $n < \omega$, ex. transduction τ_n mapping a hypergraph *G* onto the class of all trees of height $\leq n$ that are the index tree of a **strict** tree decomposition of *G*.

Lemma

For every tree decomposition, there ex. a strict tree decomposition of the same width and height.

Corollary

Every $C \leq T_n$ is equivalent to a subclass of T_n .

Theorem

 $\mathcal{T}_{n+1} \notin \operatorname{Min}(\mathcal{C}) \Rightarrow \operatorname{twd}_n(\mathcal{C}) < \infty \qquad \text{for } \mathcal{C} \subseteq \mathcal{T}_{\omega}.$

Corollary

 $\mathcal{C} < \mathcal{T}_{n+1} \Rightarrow \mathcal{C} \leq \mathcal{T}_n$

Theorem

For every transduction τ , ex. $k < \omega$ such that

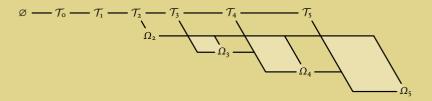
$$\Delta(\tau(T)) \ge \frac{\Delta(T)}{k}$$
 for trees $T, \tau(T)$

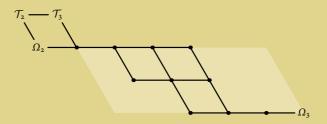
Corollary

 $\mathcal{T}_{n+1} \nleq \mathcal{T}_n$

(counting argument)

Hierarchy for countable hypergraphs

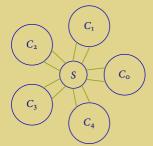




Orderable classes

Question: Is there a transduction $G \mapsto (G, <)$, for all $G \in C$?

An obvious obstruction



Sep(*G*, *k*) is the maximal number of connected components of *G* – *S*, for some $S \subseteq V$ with $|S| \leq k$.

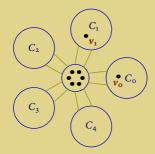
C has SEP(f) if Sep $(G, k) \leq f(k)$, for all k.

Lemma

If C is orderable, it has SEP(f) for some $f : \omega \to \omega$.

Proof sketch

 $S = \{s_1, \dots, s_k\}, C_0, C_1 \text{ connected components of } G - S, v_i \in C_i$ $C_0 \cup S \vDash \varphi(v_0; s_1, \dots, s_k) \quad \text{iff} \quad C_1 \cup S \vDash \varphi(v_1; s_1, \dots, s_k)$ implies $G \vDash \psi(v_0, v_1) \quad \text{iff} \quad G \vDash \psi(v_1, v_0).$



Lemma

There are formulae $\varphi_{k,d}(x, y)$ ordering every graph *G* with $K_{k,k} \not\leq G$ and $\text{Sep}(G, k) \leq d$.

Theorem

Let C be a class omitting some minor. Then C is orderable if, and only if, it has SEP(f) for some f.

Encoding edges by vertices

Representations of a graph *G*:

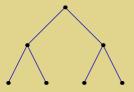
- two-sorted $G_{in} = \langle V, E, in \rangle$ with $in \subseteq V \times E$
- one-sorted $G_{ad} = \langle V, adj \rangle$ with $adj \subseteq V \times V$

Question Is $G_{ad} \mapsto G_{in}$ a transduction?

Obviously, this in only possible if *G* has few edges.

Examle

For a tree *T* encode an edge $u \rightarrow v$ by the vertex *v*.



Definition A graph G is k-sparse if

 $|E \upharpoonright X| \le k|X|$ for all $X \subseteq V$.

Theorem

For every k, there exists a transduction τ_k with

 $\tau_k(G_{ad}) = G_{in}$ for every *k*-sparse *G*.