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Introduction
Transductions are operations of the form

(hyper-)graph ~ (hyper-)graph
or graph class +— graph class

defined in terms of logic.

Applications
¢ decidability results
+ replacement for automata/transducers for arbitrary graphs

o structural reductions



Hypergraphs
G=(V,E &Po,...,Pps)

V set of vertices
E set of edges
€ incidence relation

P; colour predicates

V={uv,w,x,y,2}

E={a,b,c}
a={u,x,z}
b= {vx.)

c={w,y,z}



Monadic second-order logic (MSO)

element variables: x, y,z, ...
set variables: X, Y, Z, ...
boolean operations: A, V, -, =, <>

quantifiers: Jx, Vx, 3X, VX

Example Reachability
o(x,y) =VX[xe XAVuVv[ue X AnJe(uecervee) > veX]
~yeX]



Transductions
Operations G ~ 7(G) on (hyper-)graphs
7 = int o copy, o exp,,
¢ €Xp,, expansion by m unary predicates
* COPYy G Go---0G
¢ int MSO-interpretation

(X% 01(x), 6:(x), (%, ), ¥ (x), Yo (%), ...
G (89,859,958, y%,...) (provided G & y)

Graph classes
7(C) := Ugec 7(G)



Examples

7, : {paths} — {trees of height n}

—o— — —o— —o— ~ m

x = “the result is a tree*
0, (x) :=true
8,(x) := true
¢(x, y) := ,x is the right vertex of y.“
Vv ,x is the first vertex to the left of y with the right colour.”



7: {grids} — {graphs}
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x := “P, forms a column and P, a row.’
8,(x):=P.x
0,(x) := Pox

@(x, y) = 3z[ Pz A ,,z is in the row of x and in the column of y.“]



Theories

Interpretation Lemma

For every sentence ¢ € MSO and every transduction 7, there is a sentence
@" € MSO such that

7(G)E¢e iff GE¢®  forall hypergraphs G.

Corollary

Let 7 be a transduction. If C is a class of hypergraphs with decidable
monadic theory, the theory of 7(C) is also decidable.



Graph grammars
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Graph grammars
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Derivation trees
Each hypergraph has an derivation tree.
In the example:

O—>1—™>1—>1—>2

Theorem
For each grammar, there exists a transduction

{derivation trees} — {hypergraphs}

Corollary

Every grammar defines the image of a regular class of finite trees under a
transduction.



Tree decompositions




Examples




Tree width

The width of a tree decomposition (U, )7 is
Wd(UV)VET = maXVETlUV|
twd(G) min. width of a tree decomposition with an arbitrary tree as
index

twd,, (G) min. width of a tree decomposition with a tree of height < 7 as
index

pwd(G) min. width of a tree decomposition with a path as index

Examples
¢ Trees have tree width 2 and unbounded path width.
o Trees of height #n have path width n + 1.
¢ Cycles have tree width and path width 3.
¢ The n x n grid has tree width and path width n + 1.



Theorem

For every n < w, there ex. a transduction 7, mapping a tree T onto the
class of all hypergraphs having a tree decompositions with width < n and
index tree T.




Theorem

For every transduction 7, there ex. # < w, such that every tree T is
mapped by 7 to a hypergraph G having a tree decomposition with width
< n and index tree T.

Corollary

A class of hypergraphs has bounded tree width if, and only if, it is the

image of a class of trees under a transduction.

Question What about the converse? Can one obtain the tree
decomposition from the hypergraph?

Fact

There is no transduction T mapping a hypergraph G to the class of all tree
decompositions of G.

Open Problem

What about computing only some tree decompositions of G ?



Transduction hierarchy
Goal

Classification of classes of finite hypergraphs by their monadic theories

Order

C < K :iff ex. transduction 7 with C ¢ 7[K]
»IC is more complicated than C.«

CaK iffC<KandnoC <D< K

Theorem

AT AT, 44T, 4 <PA4T,4G

trees of height < n
all trees
all paths
all grids

QYN



Graph minors

Definition

A minor is obtained by: deletion of vertices and edges, contraction of
edges.

Lemma

Ex. transduction 7 : G - Min(G).



Excluded Grid Theorem

Theorem (Robertson, Seymour)

(a) For every tree T, ex. k < w such that
T ¢ Min(G) = pwd(G) < k

(b) For every grid E, ex. k < w such that
E ¢ Min(G) = twd(G) < k

Theorem
For every path P, ex. n, k < w such that
P ¢ Min(G) = twd,(G) < k



Consequences

Theorem
C<P iff pwd(C)<oo
C<T, iff twd(C)< oo
C<T, iff twd,(C)<oo

Corollary
PTG
P £C = C<T, for some n
Proof
G£C = G¢Min(C) = twd(C) <o = C<T,



The lower part of the hierarchy

Lemma

For every n < w, ex. transduction 7,, mapping a hypergraph G onto the
class of all trees of height < n that are the index tree of a strict tree
decomposition of G.

Lemma

For every tree decomposition, there ex. a strict tree decomposition of the
same width and height.

Corollary
Every C < 7T, is equivalent to a subclass of 7.
Theorem

Tn+:r € Min(C) = twd,(C) < oo forC € 7,.
Corollary

C<Tpn=>C<T,



Theorem

For every transduction 7, ex. k < w such that

A(r(T)) > @ for trees T, 7(T)
Corollary
Tonrr £ Ta

(counting argument)



Hierarchy for countable hypergraphs
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Orderable classes
Question: Is there a transduction G ~ (G, <), forall G € C?

An obvious obstruction

Sep(G, k) is the maximal number of connected components of G — S, for
some S € V with |S| < k.

C has SEP(f) if Sep(G, k) < f(k), for all k.



Lemma
If C is orderable, it has SEP( f) for some f: w — w.
Proof sketch

S={s1,...,s}> Co, C, connected components of G — S, v; € C;
CoUSE @(Vo381,--.>8r) If  CoUSE@(vi381,...,5¢)
implies G E y(vo,v,) iff  GE (v, o)

o)
OF
oo



Lemma

There are formulae ¢y 4(x, y) ordering every graph G with Ky  # G and
Sep(G, k) <d.

Theorem

Let C be a class omitting some minor. Then C is orderable if, and only if, it
has SEP(f) for some f.



Encoding edges by vertices

Representations of a graph G:
o two-sorted Gi, = (V, E,in) within € V x E
o one-sorted G,q = (V,adj) withadjc V x V

Question Is G,4 — Gj, a transduction?
Obviously, this in only possible if G has few edges.

Examle

For a tree T encode an edge u — v by the vertex v.



Definition A graph G is k-sparse if
|E} X| <k|X| forallXcV.

Theorem
For every k, there exists a transduction 7, with

71 (Gaa) = Gin ~ for every k-sparse G.



